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ABSTRACT

Forecast climatologies are used to remove systematic errors from forecasts and to express forecasts as

departures from normal. Forecast climatologies are computed from hindcasts by various averaging,

smoothing, and interpolation procedures. Here the Climate Forecast System, version 2 (CFSv2), monthly

forecast climatology provided by the NCEPEnvironmental Modeling Center (EMC) is shown to be biased in

the sense of systematically differing from the hindcasts that are used to compute it. These biases, which are

unexpected, are primarily due to fitting harmonics to hindcast data that have been organized in a particular

format, which on careful inspection is seen to introduce discontinuities. Biases in the monthly near-surface

temperature forecast climatology reach 28C over North America for March targets and start times at the end

of January. Biases in the monthly Niño-3.4 forecast climatology are also largest for start times near calendar-

month boundaries. A further undesirable consequence of this fitting procedure is that the EMC forecast cli-

matology varies discontinuously with lead time for fixed target month. Two alternative methods for computing

the forecast climatology are proposed and illustrated. The proposed methods more accurately fit the hindcast

data and provide a clearer representation of the CFSv2 model climate drift toward lower Niño-3.4 values for

starts in March and April and toward higher Niño-3.4 values for starts in June, July, and August.

1. Introduction

‘‘Forecast climatologies’’ are used in weather and

climate prediction to correct systematic model errors

and to express forecasts as anomalies. A forecast cli-

matology is the expected (average) forecast value for a

specified start time, lead time, and target period. The

calculation of a forecast climatology is similar in many

ways to that of an observational climatology, except

that a forecast climatology can depend on lead time as

well as target period and is computed from historical

forecasts or hindcasts rather than observations.

Forecast climatologies are especially important for

seasonal-prediction systems that are based on coupled

ocean–atmosphere models whose climatology may dif-

fer substantially from observations and may drift with

lead time (Kumar et al. 2012). In seasonal- and

subseasonal-prediction systems, forecasts are expressed

as anomalies with respect to a forecast climatology. For

instance, a forecast f for a specified start time, lead time,

and target period can be written as the sum of the

forecast climatology mf and an anomaly fa,

f 5m
f
1 f

a
.

Given an estimate m̂f of the forecast climatology, the

corresponding estimate f̂ a of the forecast anomaly is
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Error in the estimation of the forecast climatology re-

sults in estimated forecast anomalies that are biased, and

this bias increases mean-square error.

A simple (naive) method of estimating a forecast cli-

matology for a specified start time, lead time, and target

period is to average hindcasts with the same start time,

lead time, and target period from different years. That is

to say, the naive estimate of the forecast climatology

from N years of hindcast data is

m̂
f
5

1

N
�
N

i51

f
i
, (1)

where fi are hindcasts whose start time, lead time, and

target period match those of the forecast climatology

being estimated. No observational data are involved. The

accuracy of the naive estimate depends on the number of

years in the hindcast as well as the variability of the

quantity being estimated. In particular, the variance of

the naive estimate is s2
a/N, where s2

a is the variance of the

forecast anomaly. The naive approach may be problem-

atic when a forecast climatology is required for start times

that are not present in the hindcasts (e.g., when the op-

erational forecast schedule differs from that of the hind-

casts) or when the number of hindcasts is relatively small

in comparison with the forecast anomaly variance. Curve

(or surface) fittingmethods are an alternative to the naive

method. Fitting methods can estimate forecast climatol-

ogies for start times that are not in the hindcast (in-

terpolation) and can reduce the errors due to sampling

variability (smoothing).

Here we examine issues that lead to biases in the

monthly forecast climatology of the NCEP Climate

Forecast System, version 2 (CFSv2; Saha et al. 2014),

provided by the NCEP Environmental Modeling Center

(EMC). By bias, we mean the difference between the

forecast climatology and averages of the corresponding

hindcasts. The naive estimate in Eq. (1) of the forecast

climatology is equal to the hindcast average and

therefore has no bias. A fitting method is required to

compute the CFSv2 forecast climatology because the

naive estimate cannot be used for initialization times

that are not available in the hindcasts. Details of the

CFSv2 hindcasts, forecasts, and forecast climatology

are provided in section 2. A standard method for

computing a forecast climatology is to fit the hindcast

data to some specified dependence on start time,

forecast target, and lead time. Section 3 describes least

squares estimation of forecast climatologies with

linear, locally linear, and periodic dependence. The

EMC forecast climatology appears to assume periodic

dependence on start time. Section 4 examines bias in

the EMC monthly climatologies of near-surface tem-

perature and the Niño-3.4 index and relates those

biases to the fitting procedure. We propose two alter-

native methods for computing the CFSv2 monthly

forecast climatology that depend on fewer parameters

and that better fit the hindcast data. A summary and

conclusions are given in section 5.

2. Data

The CFSv2 variables examined here are 2-m tem-

perature and the Niño-3.4 index computed from sea

surface temperature (SST). We use 2-m temperature

hindcast data from 1982–2010 and SST hindcast data

from 1999–2010. CFSv2 seasonal hindcasts have initial-

izations on every fifth day starting from 1 January (not

counting 29 February in leap years) at 6-hourly intervals

(0000, 0600, 1200, and 1800 UTC; all start times here are

UTC, and we omit the time zone). Operational CFSv2

seasonal forecasts began in early 2011 and are initialized

every day at 6-hourly intervals, which means that there

are no hindcasts with matching start times for most op-

erational CFSv2 seasonal forecasts (e.g., there are no

seasonal hindcasts initialized on 2–5 January). Opera-

tional forecasts of 2-m temperature that were initialized

in January and February of 2017 are used to illustrate

the effect of the EMC forecast climatology bias on

forecast anomalies.

NCEP’s EMC provides a CFSv2 monthly forecast

climatology that matches the start times of operational

seasonal forecasts. The forecast targets are the monthly

averages of the nine calendar months that follow the

start time. We use the index k to label these nine fore-

casts, k5 1, . . . , 9. That is, for each start time, we refer to

the first of the nine monthly forecasts as the k 5 1

forecast, the second as the k5 2 forecast, and so on up to

the k 5 9 forecast. (An alternative terminology, which

we will not use here, is to refer to the k 5 1 forecast as

the lead-month-1 forecast.) For instance, for a 0000

6 January start time, forecast climatologies are provided

for the k 5 1 forecast, which is the February average,

through the k 5 9 forecast, which is the October aver-

age. Although partial calendar-month averages (e.g., the

6–31 January average from a 0000 6 January start) are

included in operational products, these targets are not

examined here and do not appear in the forecast cli-

matologies provided by EMC. Also, by convention, the

k 5 1 forecast of a forecast initialized at 0000 1 January

is the February average. Target months are plotted as a

function of start time for k5 1, k5 3, and k5 5 forecasts

in the upper panel of Fig. 1. We define the lead time L

of a forecast to be the time (in days) from the forecast
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start time S to the beginning of the target period. For

instance, the lead time of a forecast starting at 0000

6 January with February target (k 5 1) is 26 days. Lead

times are plotted as a function of start time for k 5 1,

k 5 3, and k 5 5 forecasts in the lower panel of Fig. 1.

Two sets of CFSv2 forecast climatologies are avail-

able from EMC: one for the full hindcast period (1982–

2010) and one for the last 12 years (1999–2010) of the

hindcast period. Saha et al. (2014) recommends using

the latter in the tropics for SST and precipitation over

ocean because of a time-varying systematic error re-

lated to model initialization (Kumar et al. 2012). The

skill of Niño-3.4 forecasts tends to be higher when

forecast anomalies are computed using the 1999–2010

forecast climatology (Barnston and Tippett 2013;

Barnston et al. 2018). Here we use the 1982–2010 EMC

forecast climatology for 2-m temperature and the

1999–2010 EMC forecast climatology for SST.

CFSv2 hindcasts, operational forecasts, and EMC

forecast climatologies are available for download from

the International Research Institute for Climate and

Society (IRI) Data Library (IRI 2011). EMC forecast

climatologies are available from other locations as well

(http://cfs.ncep.noaa.gov/pub/raid1/cfsv2/climo_9mon_

mmtser; https://nomads.ncdc.noaa.gov/modeldata/cfs_

reforecast_calclim_mm_9mon_flxf_1999-2010/).

3. Methods

a. Linear and local linear regression

Linear regression is a simple and powerful method for

estimating a forecast climatology from hindcast data.

For simplicity, consider a forecast for given target and

spatial location so that the forecast climatology mf is a

function of the lead time L alone, where lead time is

measured from start time to the beginning of the target

FIG. 1. Schematic showing the dependence of the (top) target month and (bottom) lead time

on start time for k 5 1, k 5 3, and k 5 5 forecasts during a year with 365 days.
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period. Over some limited range of lead times, it may be

reasonable to assume that the forecast climatology de-

pends linearly on lead time. In that case, we write

m
f
(L)5p

0
1 p

1
L , (2)

where the slope p1 and intercept p0 are unknown pa-

rameters to be estimated from the hindcast data. After

the slope and intercept are calculated, the forecast cli-

matology can be computed at any lead time whether or

not it appears in the hindcast data. The slope and in-

tercept are chosen to minimize

�
N

i51

[ f (L
i
)2m

f
(L

i
)]2 5 �

N

i51

[ f (L
i
)2 ( p

0
1p

1
L

i
)]2 , (3)

where Li, i5 1, . . . , N are lead times at which hindcasts

f(Li) for the given target and spatial location are avail-

able. Here we have applied the principle that the cli-

matology minimizes the sum of squared error.

The linear dependence of the forecast climatology on

the unknown parameters p0 and p1 allows us to write

Eqs. (2) and (3) in matrix form as

2
6666666664

m
f
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1
)

..

.

m
f
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i
)
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.

m
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i51

[ f (L
i
)2 ( p

0
1 p

1
L

i
)]2 5 kf2Xpk2 , (4)

respectively, where f is the vector whoseN elements are

f(L1), . . . , f(LN). The least squares estimate of the slope

and intercept is given by p̂ 5 (XTX)21XTf. The same

least squares formalism can be used to estimate other

functional forms of the forecast climatology as long as

the forecast climatology is a linear function of the un-

known parameters. For instance, quadratic dependence

of the forecast climatology on lead time could be in-

cluded by adding a column to the matrix X that contains

the squares of the lead times.

The assumption that the forecast climatology for

given target and spatial location depends linearly on

lead time may be unrealistic over a sufficiently wide

range of lead times. In that case, local linear regression

is a generalization of linear regression that can capture

nonlinear dependence. For a particular lead time L*,

local linear regression finds the slope and intercept that

best fit (in a least squares sense) the hindcast data that

have lead times near L* (Hastie et al. 2009; Tippett and

DelSole 2013). This selective fitting of the hindcast data

is accomplished by giving more weight to the terms in

the sum of squares in Eq. (4) that have values of Li that

are close to L*. To be specific, local linear regression

finds the slope and intercept that minimize the weighted

sum of squares

�
N

i51

K(L*,Li
)[ f (L

i
)2 ( p

o
1 p

1
L

i
)]2 5 kW1/2

* (f2Xp)k2 ,

(5)

where the weight matrixW* is anN3N diagonal matrix

whose ith diagonal element is K(L*, Li), with K being a

kernel function. The kernel function measures the sim-

ilarity of its two arguments and is large when they are

similar and small when they are not. The least squares

estimate of the local slope and intercept that minimizes

Eq. (5) is p̂* 5 (XTW*X)
21XTW*f and depends on L*

through the weight matrix W*. Local linear regression

fits the hindcast data more closely than linear regression

because the slope and intercept are allowed to vary

smoothly with L*.

Here we choose a Gaussian kernel function,

K(L*,Li
)5

1ffiffiffi
2

p
p

exp

"
(L*2L

i
)2

D2

#
,

which depends on a bandwidth D. All of the data are

weighted equally in the limit of large bandwidth, and the

linear regression solution is recovered. Here we take

D 5 15 days.

b. ‘‘EMC’’ fitting method

The linear regression method described in section 3a

can also be used to fit periodic (annual or diurnal)

behavior in the forecast climatology. The EMC CFSv2

monthly forecast climatology appears to have been

computed by fitting the hindcast data to annual and

diurnal harmonics in start time. The online description

(http://cfs.ncep.noaa.gov/cfsv2.info/CFSv2.Calibration.

Data.doc) of the EMC CFSv2 forecast climatology re-

fers to the documentation of the CFS (version 1; http://

cfs.ncep.noaa.gov/cfs.daily.climatology.doc) daily fore-

cast climatology, which was computed by fitting four

annual harmonics in start time to each lead of the

hindcast data (Epstein 1988).

We were able to match the EMC forecast clima-

tology of the Niño-3.4 index very well (see section 4)

when we fit an intercept, 10 annual harmonics, a di-

urnal harmonic, and their interaction terms separately
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to the k 5 1 hindcasts, the k 5 2 hindcasts, and so on.

We refer to this model for the forecast climatology as

periodic in S, where S is the time at which the forecast

is initialized. The periodic-in-S forecast climatology

for start time Si (in yeardays) and forecast k has the

form

m
f
(S

i
, k)5C

k
1A

k
cos(2pn

day
S
i
)1B

k
sin(2pn

day
S
i
)1 �

10

n51

a
nk
cos(2pnS

i
)1 b

nk
sin(2pnS

i
)

1 �
10

n51

c
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cos(2pn

day
S
i
) cos(2pnS

i
)1 d

nk
cos(2pn

day
S
i
) sin(2pnS

i
)

1 �
10

n51

e
nk
sin sin(2pn

day
S
i
) cos(2pnS

i
)1 f

nk
sin(2pn

day
S
i
) sin(2pnS

i
) , (6)

for i5 1, . . . ,N and k5 1, . . . , 9, where nday5 1/(1 day),

n 5 1/(365.25 days), and N is the number of lead-k

hindcasts. For each value of k, the forecast climatology

in Eq. (6) is a linear function of 63 parameters: Ck, Ak,

Bk, ank, bnk, cnk, dnk, and enk, n5 1, 2, . . . , 9, for a total of

567 parameters. The unknown parameters are estimated

from the hindcast data by the linear regression method

that was described in section 3a.Alternatively, two diurnal

harmonics, equivalent to fitting 0000, 0600, 1200 and 1800

starts separately, should match the EMC forecast clima-

tology (H. van den Dool, personal communication). The

form of Eq. (6) means that the EMC forecast climatology

is estimated independently for different values of k.

4. Results

There are two fundamental problems with themethod

used to compute the EMC forecast climatology. First,

since the forecast climatology is fit separately for each

value of k [Eq. (6) in section 3b], the method does not

constrain the forecast climatology to vary smoothly as a

function of lead time. Each value of k corresponds to a

set of lead times with a range of about 30 days (Fig. 1,

lower panel). Therefore, fitting the forecast climatology

for each value of k separately is equivalent to fitting each

range of lead times separately. For instance, fitting the

k 5 1 forecast climatology is equivalent to fitting lead

times from 6h to 31 days, whereas fitting the k 5 2

forecast climatology fits lead times from 28.25 to 62 days.

The EMC forecast climatology is constrained to be a

smooth function of lead time only over lead-time ranges

that correspond to the same value of k. Discontinuities

in the EMC forecast climatology are possible across lead

times that correspond to different values of k because

the forecast climatology values are fit separately.

The second fundamental problem with the EMC fore-

cast climatology is that harmonics in start time do not

accurately fit the hindcast data. For each value of k, the

target periods of the hindcast data vary discontinuously

with start time (Fig. 1, upper panel). These jumps in target

period occur when start times cross calendar-month

boundaries. For instance, February is the target of k 5 1

forecasts that have start times during January, but, as the

start time changes from1800 31 January to 0000 1February,

the target of the k5 1 forecast changes fromFebruary to

March. Therefore, by construction, the hindcast data for

fixed values of k are necessarily discontinuous with re-

spect to start time because their target periods change at

calendar-month boundaries. An accurate forecast cli-

matology should match these discontinuities, but using

harmonics in start time smooths out the discontinuities and

can introduce spurious oscillations (Gibbs phenomena).

The consequences of these two issues are apparent

in the EMC forecast climatology of 2-m temperature

over the contiguous United States. First, there are dis-

continuities with respect to lead time for fixed target

months. For instance, March is the k 5 1 target of a

forecast starting at 0000 1 February, with lead time of

28 days (assuming no leap year). The k 5 2 target of a

forecast starting at 1800 31 January is also March, and

the lead time of this forecast is 28.25 days.We expect the

forecast climatologies associated with these two fore-

casts to be similar since their targets are the same and

their lead times differ by only 6 h. In fact, they are dra-

matically different in the EMC forecast climatology

(Figs. 2a,b). The EMC forecast climatology from the

0000 1 February start is substantially cooler than the one

from the 1800 31 January start, by more than 58C in

some locations (see the difference map in Fig. 2c).

Moreover, neither EMC forecast climatology matches

the average of the March target hindcasts that start on

31 January. The EMC forecast climatology with 1800

31 January start is up to 28warmer (Fig. 2d), and the one

with 0000 1 February start is up to 58 cooler (Fig. 2e).
The second issue with the EMC method—that the

target period is a discontinuous function of start time for

fixed k—provides an explanation for why the forecast

climatologies in Figs. 2a and 2b are so different despite
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their target months being the same and their lead time

differing by only 6 h. The fact that the target period is a

discontinuous function of start time for any value of k

means that, even if a large number of harmonics in start

time are used, the forecast climatology will be overly

smooth and biased for start times that are near the dis-

continuities because harmonic approximations of dis-

continuous functions converge slowly with the addition

of higher harmonics. In short, the spurious lead-time

discontinuity in the EMC 2-m temperature forecast cli-

matology (Figs. 2a,b) is possible because hindcast data

are fit separately for each value of k, and the disconti-

nuity is large because harmonics in start time are being

fit to discontinuous hindcast data that result from the

target period changing at calendar-month boundaries.

The nearly indistinguishable change in the k 5 1 clima-

tology as the start time changes from 1800 31 January to

0000 1 February and the target changes from February

to March (Fig. 2f) is also unrealistic given the strong

seasonality in near-surface temperature and is further

evidence of excessive smoothing in the EMC forecast

climatology.

The EMC forecast climatology for the Niño-3.4 index

provides a more detailed picture of the problems that

arise from fitting the hindcasts to annual and diurnal

harmonics in start time. Data for k5 1, k5 2, and k5 7

are shown in Fig. 3; other values are not shown. First we

note that theEMCNiño-3.4 forecast climatology is nearly

indistinguishable from the periodic-in-S forecast climatol-

ogy [Eq. (6) in section 3b; the blue lines in Figs. 3 and 4],

even at the level of diurnal variation, which is particu-

larly large for k 5 7 (Fig. 4). The 1999–2010 hindcast

averages (circles in Fig. 3) clearly show the jumps that

are expected when start times cross calendar boundaries

and the target month changes. Despite the large number

of harmonics, the EMC forecast climatology (red lines in

Fig. 3) is overly smooth and does not match the hindcast

averages. The jumps in the k 5 1 hindcast averages at

target transitions are larger when seasonality is strong

(from late winter through late summer) and are smaller

during autumn and early winter. Dependence of the

model climatology on lead time (model climate drift) is

visible in hindcast averages whose starts are in the same

calendar month and thus have the same target month

but varying lead time. Hindcast averages for starts in

June, July, and August and k5 1 decrease by more than

0.58C for fixed target periods as the lead time increases

from 6h to 1 month (positive slope). The hindcast av-

erages show weaker dependence on lead time for starts

in winter and at longer leads.

Because the dependence of the hindcast averages on

lead time within calendar months appears approxi-

mately linear in the lead time, we propose an alternative

forecast climatology model that is linear in the lead time

L and periodic (four annual harmonics) in target period,

namely,

FIG. 2. March values of 2-m temperature from the EMCmonthly forecast climatology for (a) starts at 1800 31 Jan and (b) starts at 0000

1 Feb, and (c) their difference. Also shown is the difference of the EMC forecast climatology for March targets and (d) 1800 31 Jan and

(e) 0000 1 Feb starts with the 1982–2010 average of hindcasts with March targets starting on 31 Jan. The EMC (f) February forecast

climatology for k 5 1 starts at 1800 31 Jan. The T, S, and L labels denote target month, start time, and lead time, respectively.
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FIG. 3. The CFSv2 Niño-3.4 forecast climatology as a function of start time for (a) k5 1, (b) k5 2, and (c) k5 3.

The EMC (red lines) and periodic-in-start-time-S (blue lines) forecast climatologies are nearly indistinguishable.

The periodic-in-target-month-T/linear-in-lead-time-L (black lines) and local linear regression (gray lines) forecast

climatologies match better the 1999–2010 hindcast averages (circles with color that depends on start month). The

EMC forecast climatology is shifted by 4 days to match the hindcast averages.
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for i 5 1, . . . , N and k 5 1, . . . , 9. We include periodic

dependence on target month through the quantity Si 1
Li, which is the beginning time (yearday) of the target

period. We refer to this model for the forecast clima-

tology as periodic in T/linear in L. The model in Eq. (7)

contains 18 parameters for each value of k, for a total of

162 parameters. As in the EMCmethod, the parameters

are estimated from hindcasts by the least squares

method separately for each k. The choice of four annual

harmonics is arbitrary but reasonable (e.g., van den

Dool et al. 1997) and matches the number of harmonics

used in the CFS (version 1) daily forecast climatology.

Statistical significance testing and cross validation offer

methods for objectively choosing the number of har-

monics (Epstein 1991; Narapusetty et al. 2009). The

periodic-in-T/linear-in-L forecast climatology fits lines

through the hindcast data for each value of k, and the

slope and intercept of the lines vary periodically with

target month. The periodic-in-T/linear-in-L forecast

climatology (black lines in Fig. 3) fits the hindcast av-

erages very well (circles in Fig. 3). Although the peri-

odic-in-T/linear-in-L forecast climatology is a smooth

function of start time S and lead timeL, it has the correct

jumps as start times cross calendar boundaries because

of the discontinuous dependence of L on start time

(Fig. 1, lower panel). There is no clear indication

that including a diurnal cycle in lead time would better

fit the hindcast data. The slopes estimated in Eq. (7)

vary with target and reflect dependence on lead time.

In the absence of model climate drift, the slopes would

be zero, and the forecast climatology would be a function

of target month alone (Fig. 1, upper panel).

Examination of the linear-in-L/periodic-in-T fore-

cast climatologies for k5 1, k5 2, and k5 7 shows that

Niño-3.4 forecasts starting in the same month often have

roughly the samemodel climate drift (slope) regardless of

target (Fig. 3). For instance, starts during June–August

have hindcast averages that decrease with lead time

(positive slope). This feature is clear in the hindcast data

and the linear-in-L/periodic-in-T forecast climatologies

but is less so in the EMC forecast climatology, which

shows the opposite model climate drift for k 5 1 and

k 5 2 forecasts starting in June. Starts during March and

April have hindcast averages that increase with lead time

(negative slope). Less consistency between start month

and lead-time dependence is apparent in other months.

Although the periodic-in-T/linear-in-L model from

Eq. (7) fits the hindcast data fairly well for fixed k, it does

not constrain the resulting forecast climatology to be a

smooth function of lead time for a given target month.

Fitting Eq. (7) to hindcasts separately only guarantees

smooth dependence on lead time (linear dependence, in

fact) for start times that are in the same month. To ex-

amine this aspect of the forecast climatologies and

hindcast data, we fix the target month and allow the lead

time to range from 6h to 270 days (;9 months). With

this arrangement, the EMC forecast climatology, which

is an excessively smooth function of start time for fixed

values of k, displays unrealistic jumps as a function of

lead time (October–March targets in Fig. 5; other targets

FIG. 4. As in Fig. 3, but restricted to January and February starts.
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not shown). The periodic-in-T/linear-in-Lmodel from Eq.

(7) is a piecewise linear function of lead time and has small

jumps at calendar-month boundaries that are due to fitting

hindcasts separately for each value of k. A solution to this

problem is to fit all of the hindcast data together rather

than fitting separately for each value of k. For a fixed target

month, the dependence of the forecast climatology on lead

time is not linear, although the piecewise-linear approxi-

mation is fairly good. Fitting the hindcast data to a poly-

nomial in lead time for each target gives reasonable results,

but with some excessive variations at the lead-time end-

points (not shown). Instead we propose fitting the hind-

casts for each target by local linear regression in lead time

as described in section 3a (Hastie et al. 2009; Tippett and

DelSole 2013). The resulting forecast climatology matches

the jumps in hindcast averages as the targetmonth changes

(Fig. 3) and is a smooth function of lead time for fixed

target months (Fig. 5).

Qualitatively similar improvements are seen when the

2-m temperature forecast climatology is computed using

the periodic-in-T/linear-in-L and local linear regression

methods. Using the periodic-in-T/linear-in-L model [Eq.

(7)], theMarch value of the monthly forecast climatology

changes little as the start time moves from 1800 31 Janu-

ary to 0000 1 February (Figs. 6a,b), in contrast to the jump

seen in the EMC forecast climatology (Figs. 2a,b).

Nonetheless, the change (Fig. 6c) is larger than would be

expected from increasing the lead time by 6h and is a

consequence of fitting k 5 1 and k 5 2 hindcasts sepa-

rately. March values of the monthly forecast climatology

FIG. 5. The CFSv2 Niño-3.4 index forecast climatology for (top) October, November, and

December targets and (bottom) January, February, and March targets as a function of lead

time as provided by EMC (jagged colored lines), fit to be periodic in target month T/linear in

lead time L (black line segments) and estimated by local linear regression (smooth gray

curve). Circles are hindcast averages.

MAY 2018 T I P P ETT ET AL . 1119

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/01/21 04:27 PM UTC



that are based on local linear regression (Figs. 6d,e) in-

clude k 5 1 and k 5 2 hindcast data in their calculation

and show substantially smaller changes as the start time

moves from 1800 31 January to 0000 1 February (Fig. 6f).

The choice of forecast climatology can have a large

impact on the resulting forecast anomalies and, therefore,

forecast skill. For example, consider CFSv2 forecasts of

the March 2017 2-m temperature anomaly with start

times at the end of January 2017 and the beginning of

February 2017. Using the EMC forecast climatology, the

forecast anomaly from the 1800 31 January 2017 CFSv2

integration (Fig. 7a) is substantially cooler than that from

the CFSv2 integration starting 6h later (Fig. 7b). This dif-

ference in forecast anomaly is primarily due to the discon-

tinuity in the EMC forecast climatology, however, rather

than to the change in the forecast. The forecast anomalies

computed with respect to the local linear forecast clima-

tology show much less variation from one start time to the

next (Figs. 7c,d). Observed March 2017 2-m temperature

anomalies (not shown) were warm in the west and cool in

the east, meaning that, although none of the forecasts cap-

tured the observed anomaly pattern, using the local linear

regression forecast climatology resulted in smaller errors.

5. Summary and conclusions

Forecast climatologies are an essential part of a forecast

system, especially for extended-range predictions that are

expressed as anomalies or that have systematic errors in

their climatology. When the arrangement of hindcasts dif-

fers from that of real-time forecasts, some interpolation or

fitting method is needed to produce a forecast climatology

that matches the real-time forecasts. Fitting methods also

help to reduce errors due to sampling variability. Improved

estimates of forecast climatologies can lead to more accu-

rate forecasts and assessments of forecast skill.

Here we have examined factors that lead to bias in

the monthly CFSv2 forecast climatology provided by

the NCEP Environmental Modeling Center. Real-time

seasonal CFSv2 initializations are more frequent (every

6h) than hindcast ones (every fifth day), and some fitting

procedure is necessary to estimate a forecast climatology

for start times that are not in the hindcast. The EMC

forecast climatology fits the hindcast data to annual and

diurnal harmonics in start time for each of the nine

calendar-month target periods (indexed by k, k5 1, . . . , 9)

that follow the start time. As a result, the EMC forecast

climatology is a smooth function of start time for each

value of k. The forecast target period for each k changes

discontinuously as the start time crosses calendar-month

boundaries, however. For instance, February averages

are the targets of k 5 1 forecasts starting in January,

whereasMarch averages are the targets of k5 1 forecasts

starting in February. These jumps in target month are not

captured by the harmonic expansion in start time, and

the excessive smoothness results in considerable bias

between the EMC forecast climatology and hindcast av-

erages near calendar-month transitions, which we have

FIG. 6. March values of 2-m temperature from the periodic-in-T/linear-in-L monthly forecast climatology for starts at (a) 1800 31 Jan

and (b) 0000 1 Feb, and (c) their difference. Also shown are March values of 2-m temperature from the local linear regression monthly

forecast climatology for (d) starts at 1800 31 Jan and (e) starts at 0000 1 Feb, and (f) their difference. The T, S, and L labels denote target

month, start time, and lead time, respectively.
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demonstrated for 2-m temperature and the Niño-3.4 in-

dex. A further problem with the EMC forecast clima-

tology is that fitting the forecast climatology separately

for each value of k does not constrain the forecast cli-

matology to be a smooth function of lead time for fixed

target month because lead times corresponding to dif-

ferent values of k are fit independently. As a result, the

EMC forecast climatology has discontinuities with re-

spect to lead time for fixed target months.

Here we have proposed two alternative methods for

computing monthly forecast climatologies that better match

theCFSv2 hindcast data. In the first, the forecast climatology

is assumed to be piecewise linear in lead time and annually

periodic in target month. This model better fits the data but

has small jumps as lead times cross calendar-month bound-

aries because it is fit separately for each value of k. The

second proposed method uses local linear regression to fit

the lead-time dependence for each target month using all of

the hindcast data with that target. The resulting forecast

climatology is a smooth function of lead time for each target

month, similar to that obtained in Trenary et al. (2018) by

smoothing the EMC-provided forecast climatology for fixed

target months. The proposed methods provide a clearer

and more accurate representation of lead-time dependence

(model climate drift) in the Niño-3.4 forecast climatology.

CFSv2 forecasts starting in March and April tend toward

lower Niño-3.4 values as lead time increases, whereas fore-

casts starting in June, July, and August tend toward higher

Niño-3.4 values.
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